The Guessing Number of Undirected Graphs
نویسندگان
چکیده
Riis [Electron. J. Combin., 14(1):R44, 2007] introduced a guessing game for graphs which is equivalent to finding protocols for network coding. In this paper we prove upper and lower bounds for the winning probability of the guessing game on undirected graphs. We find optimal bounds for perfect graphs and minimally imperfect graphs, and present a conjecture relating the exact value for all graphs to the fractional chromatic number.
منابع مشابه
Guessing Games on Triangle-Free Graphs
The guessing game introduced by Riis [Electron. J. Combin. 2007] is a variant of the “guessing your own hats” game and can be played on any simple directed graph G on n vertices. For each digraph G, it is proved that there exists a unique guessing number gn(G) associated to the guessing game played on G. When we consider the directed edge to be bidirected, in other words, the graph G is undirec...
متن کاملThe linear guessing number of undirected graphs
Article history: Received 15 January 2013 Accepted 5 February 2014 Available online xxxx Submitted by R. Brualdi MSC: 05C72 05C57 68R10 94A99
متن کاملIntersection graphs associated with semigroup acts
The intersection graph $mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the fi...
متن کاملNILPOTENT GRAPHS OF MATRIX ALGEBRAS
Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...
متن کاملTHE ORDER GRAPHS OF GROUPS
Let $G$ be a group. The order graph of $G$ is the (undirected)graph $Gamma(G)$,those whose vertices are non-trivial subgroups of $G$ and two distinctvertices $H$ and $K$ are adjacent if and only if either$o(H)|o(K)$ or $o(K)|o(H)$. In this paper, we investigate theinterplay between the group-theoretic properties of $G$ and thegraph-theoretic properties of $Gamma(G)$. For a finite group$G$, we s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 18 شماره
صفحات -
تاریخ انتشار 2011